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Бионический принцип в искусственном интеллекте

История

1. Нейронные сети первого поколения. Персептрон. Первоначальная идея 
состояла в имитации биологических нейронов и нейронных ансамблей, но 
получилось совершенно непохоже.

2. Экспертные системы. Полный отказ от бионического принципа. Идея 
строить интеллектуальные системы на основе формального логического 
вывода и методов индукции (потом добавился еще data mining).

3. Нейронные сети второго поколения. Глубокое обучение и сверточные сети. 
Вопрос о близости этих моделей к биологической реальности не имеет 
существенного значения.

4. Импульсные нейронные сети. Биологическая правдоподобность как один 
из основных принципов.



Строить искусственный интеллект моделируя элементную базу естественного
интеллекта

Почему это снова актуально

Победный марш нейронных сетей и их проникновение во все сферы жизни продолжается. 
Одновременно становятся ясны присущие им проблемы и ограничения. Эти проблемы в 
первую очередь проявляются на 2 противоположных полюсах искусственного интеллекта, где 
как раз ожидается технологический прорыв от его применения:

• Большие интеллектуальные системы по когнитивным возможностям приближающиеся к 
человеческим. «Большой» интеллект.

• Миниатюрные автономные интеллектуальные устройства для применения во всех сферах 
жизни (интернет вещей, робототехника, безопасность, медицинские устройства, 
встраиваемые в тело человека и т.д.). «Малый» интеллект.

Эти проблемы можно разбить на три группы, хотя они в большой степени взаимосвязаны:

• Энергоэкономичность

• Масштабируемость

• Необходимость взаимодействовать с динамической асинхронной средой.



Энергоэкономичность

Трудно в точности сравнить затраты энергии на проведение одних и тех же 
операций биологического мозга и компьютерных реализаций традиционных 
сетей, но очевидно, что мозг на много порядков экономичнее. Мозг 
потребляет 20-30 Вт энергии, в то же время все GPU суперкомпьютера 
«Кристафари», которому потребовалось несколько месяцев для обучения 
нейросетевой лингвистической модели GPT-3, потребляют около 1 МВт. 

Это в равной степени препятствует расширению применения традиционных 
нейросетей и в «малом» и в «большом» интеллекте. 



Масштабируемость

Очевидно, что решение более сложных интеллектуальных задач неизбежно 
сопровождается увеличением сложности и размера решающих их нейросетей. 
Если принять за единицу сложности одну синаптическую связь в мозге и один 
параметр нейросетевой модели, то при всей приблизительности этой 
аналогии ясно, что для достижения сравнимых с человеком когнитивных 
возможностей требуется увеличение роста сложности нейросетевых моделей 
на несколько порядков. 

Число синаптических связей в мозге человека ~ 1014.

Число параметров в самых сложных современных нейросетевых моделях ~ 
1012. Обучение такой модели требует месяцев счета на самых мощных 
имеющихся суперкомпьютерах. Дальнейшее увеличение сложности 
нейросетевых моделей традиционного типа и на существующих аппаратных 
платформах даже на порядок представляется проблематичной.



Необходимость взаимодействовать с динамической асинхронной средой

Традиционные нейронные сети предполагают очень жесткий протокол 
взаимодействия с их информационным окружением. Предполагается, что 
входные данные представляют собой последовательность фреймов данных. 
После предъявления очередного фрейма состояние всей нейросети 
синхронным образом перевычисляется и сеть возвращает некоторый 
выходной набор значений. В то же время человек и любые интеллектуальные 
агенты, взаимодействующие с реальным миром, должны жить в непрерывном 
времени в условиях динамических потоков данных, разворачивающихся в 
разных временных шкалах.



Импульсные нейронные сети ИНС класс формальных моделей нейронных ансамблей мозга позволяющих

решить перечисленные проблемы с помощью тех же принципов что лежат в основе функционирования

биологических нейронов

 Информация, которая передается от нейрона к нейрону – это объект, не имеющий никаких других атрибутов 
кроме времени его генерации. В мозге ему соответствует нервный импульс или спайк, передаваемый от 
нейрона к нейрону через синаптическую связь. Функционирование нейрона проявляется только как генерация 
им спайков.  Время генерации нейроном спайков зависит только о спайков, пришедших на его синапсы.

 Функционирование разных нейронов никак явно между собой не синхронизировано.

 Энергоэкономичность – основанная на событиях модель функционирования нейрона – функционирование нейрона состоит 
в выполнении им простых операций после прихода пресинаптического спайка, после которых он переходит в пассивное 
состояние не требующее вычислений и не расходующее энергию. Простота объектов, используемых для передачи 
информации между нейронами (элементарные события – спайки), определяет простоту и быстроту операций их обработки.

 Масштабируемость – отсутствие явной синхронизации работы нейронов, отсутствие постоянного потока данных по всем 
синаптическим связям, толерантность к потере отдельных спайков и отказу отдельных нейронов

 Асинхронная среда – нет принципиальной разницы между взаимодействием между нейронами и их взаимодействием с 
окружающей средой. В обоих случаях это асинхронный обмен спайками. Протокол этого обмена никак не фиксируется.



Самая базовая операция,
на которой построено 
функционирование ИНС, –
фиксация совпадений прихода
спайков на разные синапсы.

Уже существуют нейрочипы, 
которые реализуют эту модель
«в железе»

Например, отечественный
нейрочип «Алтай»,
разработанный компанией
Мотив НТ

спайк

ΘR C

Простейшая формальная модель импульсного нейрона
нейрон пороговый интегратор с утечкой



Генерация спайка



Класс моделей

1. «Одномерная» модель – состояние нейрона описывается его мембранным потенциалом.
2. Мембранный потенциал зависит только от времени прихода спайков и времени генерации 

последнего спайка.
3. Вес синапса определяет величину инжектируемого заряда. 



Нейроны с синапсами контролирующими
мембранную проводимость
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Если u = uTHR, генерация спайка, u ← u0



Нейрон Ижикевича



Детальная модель нейрона



Пороговый интегратор с утечкой и адаптивным порогом
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• Гомеостаз более слабый рост
частоты генерации спайков при
растущей стимуляции

• Более выраженная реакция на
динамические стимулы
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• Если u(t) = uTHR(t),

генерация спайка, u ← u0

• u(t) ограничен снизу 

значением uL



Модели нейронов с точки зрения аппаратной реализации

• Аналоговая реализация экспонент аддитивных компонент
уравнений сравнения с пороговым потенциалом переустановки
мембранного потенциала

• Цифровая реализация малое количество мультипликативных
операций отсутствие трансцендентных функций

• Линеаризованные модели нейронов
• замена экспонент линейным ростом падением

• использование аппаратно сгенерированных случайных чисел



Асинхронные методы кодирования
информации в ИНС

 Частотное

 Популяционное

 Позиционное
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Дифференциальное кодирование



Синхронные методы кодирования информации в ИНС

 Пространственно-временное

 Временной сдвиг

 Фазовое
слабый                           сильный

слабый                           сильный



Архитектуры ИНС
большое разнообразие

Хаотические рекуррентные ИНС

Слоистые с латеральным торможением («победитель 
получает все»)

Модели слоисто-колончатых нейронных структур коры 
головного мозга

…



Обучение ИНС
общая идея такая же как для традиционных сетей модификация

синаптических весов но

 Дискретное функционирование препятствует непосредственному применению 
градиентных методов (аналогов алгоритма обратного распространения ошибки). 
Хотя проекции основных подходов обучения традиционных нейросетей на ИНС 
существуют и развиваются.

 Коллективное кодирование информации и принцип толерантности к отказам 
отдельных нейронов делает практически ненаблюдаемым эффект модификации 
единичного синаптического веса на глобальные показатели поведения сети.

 Алгоритм обратного распространения ошибки биологически нереалистичен.

Основные принципы обучения ИНС:

 Принцип локальности

 Принцип Хебба

Применяются еще методы с динамически 
меняющейся структурой сети (добавление нейронов, 
которые дали бы правильный ответ и уничтожение 
нейронов, которые часто ошибаются)



базовая модель синаптической
пластичности

По Bi G., Poo M. 1998



Гомеостатические поправки к

• Стабилизация синапса за счет введения понятия синаптического ресурса

• ограничение суммарного синаптического веса или константный суммарный
синаптический вес

• уменьшение эффективности при повышении частоты генерации спайков

• модуляция пластичности активностью определенных синапсов

• Асимметричная безусловное подавление синапса при приходе
спайка

• моделирование кратковременного синаптического подавления



Общий подход к обучению ИНС обучение
основанное на выявлении корреляций

• поиск корреляций во входном сигнале

• поиск корреляций между входным сигналом и
сигналом кодирующим целевую переменную

• поиск корреляций между входным сигналом
выходным сигналом и оценочным сигналом возможно с временной
задержкой

• Антикорреляции находятся аналогичным образом за счет использования
тормозных нейронов

• Обучающиеся структуры могут иерархическими например
может быть организовано поверх структур реализующих

выделение информативных свойств с помощью



Альтернативный подход к обучению
машина с жидким состоянием



Реализация оперативной памяти в ИНС
Рекуррентные структуры с циклической активностью

Хорошо управляемая память
Легкая считываемость
Низкая емкость
Может запоминать небинарные величины

Медленные компоненты состояния нейронов
Не очень надежная память
Непростые механизмы считывания
Сильно ограничена по времени
Средняя емкость
Запоминает лишь бинарные величины но может хранить время

Полихронные группы и кратковременная пластичность
Трудность запоминания
Эффективно реализуется только в больших ИНС
Очень большая емкость
Запоминает лишь бинарные величины
Сильно ограничена по времени

Непрерывные аттракторы
Может хранить действительные числа
Очень низкая емкость
Легкая считываемость
Большое время



Полихронные нейронные группы по



Нейроморфные технологии и исследование мозга связанные
и взаимообогащающие научные направления

Нейрофизиологические 
измерения и 

эксперименты, изучение 
биологических ИНС

Предсказание новых 
эффектов и построение 

гипотез на основе анализа 
результатов 

моделирования

Планирование 
экспериментов по их 

проверке.

Понимание принципов работы 
мозга

Решение прикладных задач

Компьютерное моделирование больших ИНС, 
вычислительный эксперимент. Моделирование 

самоорганизации и структурной эволюции 
больших хаотических ИНС. *

*Для этого требуются нейрокомпьютеры. Пока они малодоступны – GPU-кластеры.



Аппаратные платформы для моделирования ИНС

Архитектура Платформа Кем реализуется

Цифровая, универсальный 
процессор

GPU, GPU-кластеры
ранообразные группы и 

проекты

SpiNNaker Университет Манчестера

Цифровая

Loihi Intel

TrueNorth IBM

Алтай Мотив

Tianjic Университет Синьхуа

Гибридная

NeuroGrid Stanford

BrainScaleS
HBP, Гейдельбергский

университет



Моделирование ИНС на
основных процесса которые требуется моделировать

• обновление состояния каждого нейрона и определение
факта генерации им спайка

• распространение спайков от пресинаптических нейронов
к постсинаптическим нейронам

• модификация весов синапсов в соответствии с законами
пластичности



с точки зрения моделирования ИНС

Физический уровень параллелизма несколько тысяч ядер

Логический параллелизм обеспечивается иерархией структур потоков управления нить блок
решетка абстрагированной от физической конфигурации вычислителя

Ограничение нити на блок влечет мягкое ограничение синапсов на нейрон наиболее
эффективная реализация

Низкая цена создания и оперирования с нитью простые вычисления на многочисленных синапсах

Регистровая память достаточна для хранения состояния нейронов в любых практически
используемых моделях

Память на плате главный лимитирующий фактор достаточна для хранения очередей
пресинаптических спайков и данных по задержкам и весам сотен миллионов синапсов

Возможны трудности с подачей интенсивного потока внешних спайков в силу медленности и
высокой латентности

Вывод: GPU – адекватное средство для моделирования ИНС 
размером до 100000 нейронов, 10000 синапсов на нейрон



Принципы реализации ИНС на

Необходимость частичной синхронизации каждая фаза пересчета сети как
отдельный вызов

Наиболее удобный подход нейрон блок синапс нить Менее
эффективно при большем числе синапсов мерная решетка нейрон

слой решетки

Эмуляция задержек распространения спайков за счет входных битовых
очередей задержки в интервале



Обмен спайками по протоколу

• Разумная альтернатива физическим связям

• Обычно крайне невелико информационное наполнение
обычно только идентификатор пресинаптического нейрона

• Доставка пакета не гарантируется

• Доставка пакета предполагается мгновенной так что
синаптические задержки моделируются на стороне
постсинаптического нейрона
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характеристики

• асинхронно работающих ядер на чипе из них
выполняет системные функции и зарезервировано на случай
сбоя ядра

• смонтирована на втором слое чипа

• Эффективная схема маршрутизации пакетов

• линий для связи с другими чипами

• Программная поддержка большинства используемых моделей
нейронов синапсов и синаптической пластичности

• чип способен эмулировать в реальном времени несколько тысяч
пластичных нейронов с сотнями синапсов

• Виртуальная конфигурация структуры сети

• Основной структурный элемент чиповая плата



масштабируемость

48-чиповая плата, ~105 нейронов

стойка из 24 плат, ~106 нейронов
энергопотребление 2 kW

нейросуперкомпьютер SpiNNaker – 25
стоек, 518400 ядер с виртуальной
тороидальной топологией, ~108 нейронов 
(планируется  удвоить).



проблемы

• скалярный универсальный процессор много
неиспользуемых элементов недостаточное количество
эмулируемых нейронов на чипе

• доступ к внешней памяти узкое место фон
Неймановской архитектуры

• недостаточная системная поддержка трудность
модификации стандартных моделей нейронов отладки
мониторинга



Гибридные нейроморфные
вычислители

• нейронов
синапсов

•
нейронов синапсов
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достигнутые параметры

• миллион нейронов на чипе

• синапсов на нейрон

• Модель нейрона обобщенный линеаризованный стохастический

• Самый крупный чип современности миллиардов транзисторов
процесс

• параллельно работающих ядер

• МВ памяти на чипе

• пиковая потребляемая мощность сравнимо
с мозгом



проблемы

• Модель нейрона простая и жесткая не программируется

• Нет синаптической пластичности

• Синапсов слишком мало

• Архитектура сети жестко ориентирована на сверточные
сети

• Веса синапсов могут принимать лишь из значений



• 130 тысяч нейронов с 130 млн. синапсов;

• 128 асинхронно асинхронно работающих нейроядер + 3 

универсальных процессора Lakemont;

• техпроцесс 14-нм;

• в сравнении с GPU энергопотребление ниже в сотни раз на 

бенчмарках по deep learning;

• Реализована синаптическая пластичность на чипе для 

реализации локальных алгоритмов обучения.



Архитектура чипа



Реализация синаптической пластичности



Богатство реализуемых законов пластичности примеры



Компонентная модель дендритов бинарное дерево



Нейрокомпьютеры основанные на



Общая архитектура системы



Программная архитектура



Основные задачи моделирования ИНС в
настоящее время

• Развитие методов обучения ИНС

• Моделирование обработки сенсорной информации

• Моделирование механизмов памяти

• Исследование кодирования информации в ИНС и конвертации между разными
способами кодирования

• Применение ИНС в системах автоматического управления

• Нейропротезирование и интерфейсы мозг компьютер

• Изучение общих проблем самоорганизации ИНС теоретических принципов
обработки информации ими



Научная тематика лаборатории нейроморфных вычислений ЧГУ
проект и лаборатории нейроморфных систем

искусственного интеллекта Цифрум ЧГУ Мотив НТ
Лаборатория Касперского

• разработка моделей импульсных нейронных сетей, имитирующих принципы работы 
биологических нейронных сетей

• разработка перспективных архитектур нейроморфных систем искусственного интеллекта
• формирование подходов к построению эффективных нейросетевых структур с применением 

генетических алгоритмов и других эволюционных методов оптимизации
• разработка программных моделей перспективных нейроморфных процессорных элементов, 

анализ эффективности их реализации в типовых технологических процессах
• изучение различных моделей синаптической пластичности, как базиса для реализации 

алгоритмов обучения «с учителем и без учителя»
• формирование подходов к созданию нейроморфного процессора с возможностью динамической 

корректировки синаптических весов (способность к самообучению)
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